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Abstract
A common approach for calculating the spatial distribution of groundwater level changes consists in choosing a set of dif-
ferent times, interpolating the groundwater level data available at each time over a spatial grid, and then calculating changes 
in each period by subtracting the interpolated values for these times. However, this can produce misleading results when 
the data are available in different positions for consecutive times. This paper presents an alternative procedure based on the 
interpolation of the groundwater level with spatio-temporal kriging, the assessment of the temporal groundwater elevation 
changes over a regional semiconfined aquifer, and the estimation of their error standard deviations. A comparative analysis 
of cross-validation results and error standard deviations provides a quantitative measure of the superiority of the introduced 
approach with respect to the one given in the literature. Moreover, the spatio-temporal case produces more reasonable esti-
mates than the spatial kriging, notably fewer extreme recoveries and drawdowns, in an area under high water stress, such as 
the upper aquifer of the southern part of the Basin of Mexico aquifer system.

Keywords Geostatistics · Groundwater development · Groundwater flow · Spatio-temporal kriging · Mexico

Introduction

Analyzing groundwater level changes at the regional scale 
constitutes an essential tool for evaluating the response of 
aquifers to climatic variation and management policies. Its 

correct interpretation is critical for hydrogeologists since it 
provides information about groundwater storage changes for 
a specific period and can also trigger warning alarms regard-
ing undesirable water level decline rates. Thus, it represents 
a valuable asset to better understanding groundwater dynam-
ics. The reliability of the spatial distribution of groundwater 
level changes for a given period depends on the quantity 
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and quality of the available data at the initial and final times 
of the period. Measurement errors, differences between the 
number and position of monitored piezometers or wells at 
the initial and the final monitoring dates, and the estimation 
method used to calculate the variations are among the largest 
sources of estimate uncertainty.

Evaluation of the spatial distribution of temporal 
changes in groundwater levels can be done by using depth 
to groundwater (DG) or groundwater elevation (GE) esti-
mates. Among the different existing approaches to estimate 
DG and GE, the geostatistical one has often been used with 
good results.

Table 1 summarizes the papers that have focused on 
estimating DG, GE, and temporal changes in groundwater 
levels using geostatistics, including this one. The papers are 
reported according to three categories, depending on their 
approach: spatial and temporal separately, multivariate, and 
spatio-temporal (ST). They are ordered chronologically 
within each category. For the first kind of analysis, ground-
water levels at different times are considered independent 
spatial random fields, and groundwater levels at different 
positions are treated as independent temporal series. In the 
multivariate analysis groundwater levels at each time are 
figured as different random fields, temporally correlated. 
Finally, the ST analysis considers groundwater levels at all 
positions and times as a spatially and temporally correlated 
random field. Only the last two kinds of analysis account for 
the ST correlations of groundwater levels.

Most geostatistical analyses of groundwater changes over 
time were applied to unconfined porous aquifers and, just 
recently, to semiconfined aquifers, karstic aquifers, and aqui-
fer systems or several aquifers laterally connected.

Concerning spatial scales, there are three ranges: local 
(10 km2 ), medium ( 102 km2 ), and regional ( 103 km2 ). It is 
important to note that it has been only recently that ST anal-
yses on regional scales have been published. The density of 
positions per kilometer for the spatial analyses or the average 
spatial density for the ST analyses is reported in Table 1 as 
a measure of the scarcity of spatial data.

Two kriging methods were applied for the ST approach, 
ordinary and residual ordinary kriging. Concerning the ST 
structure assumed for the covariances, three kinds have been 
used in the reported works, product-sum, sum-metric, and 
Spartan. Also, a non-Euclidean distance was used to repre-
sent better the effects of contrasting hydraulic conductivities 
on hydraulic levels of aquifers connected laterally.

The only works that used a ST approach and reported 
groundwater level temporal changes are Ruybal et al. (2019a, 
2019b). The temporal changes for the reported periods were 
calculated by subtracting the groundwater elevation (GE) 
estimates, using ST kriging, for the initial and final dates of 
the period. However, they did not report standard deviation 

(SD) or variances for groundwater level change errors. On 
the other hand, of those using spatial kriging to estimate 
groundwater level changes, only Ahmadi and Sedghamiz 
(2007) included the spatial distribution of SD. For each well, 
DG in the final year was subtracted from that in the initial 
year, and afterward, interpolation was done using ordinary 
kriging.

Differently from the other contributions, this paper 
assesses the spatial distribution of the temporal changes 
in groundwater levels through spatial and ST kriging 
for the upper aquifer of the Southern part of the Basin 
of Mexico Aquifer System (SBMAS) and their estimate 
error standard deviations. It is worth noting that the stand-
ard deviations of the ST kriging estimate differences are 
presented for the first time. This work also contributes 
to establish a systematic procedure for ST geostatistical 
analysis by using the non-separability index for the choice 
of the appropriate class of the ST variogram model that 
fits the surface of the empirical variogram (De Iaco and 
Posa 2013; Cappello et al. 2018). Concerning the charac-
teristics of the application, this is one of the few works 
that apply ST geostatistics to a semiconfined aquifer under 
high water stress on a regional scale.

The structure of this paper is as follows. “Materials and 
methods” section presents the background for the spatial and 
the ST geostatistical-based approaches used in this research 
to estimate the GE level and the spatial distribution of 
groundwater-level temporal changes. “Main characteristics 
of the study area” section describes the main demographic, 
climatic, physical, and hydrogeological features of the region 
where the analysis is done and the conceptual model of the 
groundwater flow dynamics. “Geostatistical modeling” 
section presents spatial and ST geostatistical analyses for 
the GE data and compares the GE’s spatial and ST kriging 
estimates and their changes between two specified years. 
Finally, the last two sections provide some remarks on the 
obtained results compared with previous studies and some 
conclusions regarding open issues.

Materials and methods

The spatial distribution of the temporal changes in GE for a 
given period is calculated as the difference in the values of 
the GE spatial interpolations for the period’s initial and final 
dates. One of the most common alternatives for interpolating 
GE for a given date is using spatial geostatistical methods 
such as ordinary kriging. However, when data at different 
sample locations for the initial and final dates are available 
and used as input for interpolations, inconsistencies in the 
spatial distribution of temporal changes can be presented 
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since kriging produces smoothed estimates depending on 
data availability.

In the present paper, the spatial distribution of temporal 
changes in GE for the upper aquifer of the SBMAS is calcu-
lated from 2002 to 2007 using spatial and ST geostatistical 
techniques. Subsequently, the GE differences are statistically 
compared.

For the spatial approach, the GE map of each year is esti-
mated using data from the same year only. GE is assumed 
to be a finite realization of a real-valued spatial random 
field {Z(s)∶ s ∈ D} where s is a spatial location and D ⊆ ℝ

d 
( d ≥ 2 ) is the spatial domain. The random field is assumed to 
be second-order stationary, with an expected value constant 
over the domain, i.e., E[Z(s)] = m, ∀s ∈ D , and a covariance 
which is only dependent on the separation vector h , i.e., 
C(h) = E[Z(� + �) − Z(s)] − m2, s, � + � ∈ D . Under second 
order stationarity, this relationship between covariogram and 
variogram holds: C(h) = C(0) − �(h).

 Estimation problems can be addressed by resorting to 
the kriging method, such as ordinary kriging, which is used 
when the expected value is assumed constant and unknown 
(Chilès and Delfiner 2012). Applying kriging for estimation 
purposes implies knowledge of a spatial correlation model. 
Thus, it is necessary to estimate and model a measure of 
spatial correlation, like the variogram, based on the sample 
data.

It is important to recall that the variogram model selected 
to fit the empirical variogram must be conditionally negative 
definite; for this reason, well-known functions, i.e., spheri-
cal, exponential, Gaussian, and hole effect, which satisfy this 
condition, are widely used (Journel and Huijbregts 1978; 
Cressie 1993; Christakos 1984).

For the ST approach, data from the whole dataset are 
used to obtain the estimates for the initial and final years 
of the period fixed for computing the variation. In a ST 
context, the observations of the GE are assumed to be a 
finite realization of a real-valued ST random field, which 
is denoted with {Z(s, t)∶ (s, t) ∈ D × T} , where (s, t) is a 
ST location, D ⊆ ℝ

d ( d ≥ 2 ) is the spatial domain, and 
T ⊆ ℝ is the temporal domain. Under second-order sta-
tionarity, the random function Z is characterized by a con-
stant expected value, i.e., E[Z(s, t)] = m, ∀(s, t) ∈ D × T  , 
and a covariance or a variogram function which depends 
on the ST lag (hs, ht) , i.e., Cst(s, t; s

�, t�) = Cst(hs, ht) , where 
hs = (s − s�) and ht = (t − t�) . Similarly to the spatial 
domain, the following relationship between covariogram 
and variogram holds: Cst(hs, ht) = Cst(0, 0) − �st(hs, ht) . 
In order to face estimation problems in space-time, the 
ordinary kriging estimator Ẑ(s, t) can be used (Chilès and 
Delfiner 2012).

As in the spatial case, the ST kriging system 
requires knowledge of the variogram model. For this 

aim, structural analysis for variogram estimation and 
modeling has to be conducted. To model the sample ST 
variogram, the literature offers a wide list of classes of 
variogram functions to choose from. In particular, the 
product class, where space and time are treated sepa-
rately (Rodriguez-Iturbe and Mejía 1974; Posa 1993) 
has represented the base to generate other parametric 
families of ST variogram or covariance functions (De 
Iaco et al. 2001; Ma 2002, 2003). Otherwise, various 
classes of non-separable ST models were also developed 
by Cressie and Huang (1999), Gneiting (2002), De Iaco 
et al. (2002), among others.

In this context, the non-separability index, firstly intro-
duced by Rodriguez and Diggle (2010) and then gener-
alized by De Iaco and Posa (2013), was proposed in the 
literature in order to choose the appropriate class of model 
for describing the empirical ST correlation structure. After 
the selection of the appropriate class of ST variogram or 
covariance model and the estimation of the corresponding 
parameters, the specific model can be used for prediction 
purposes.

In the following the main notions concerning the non-sep-
arability index and the product-sum model will be recalled. 
The focus on the product-sum model is justified since its 
type of non-separability is consistent with the one shown 
by the empirical ST correlation structure of the GE data 
under study.

The non‑separability index and its interpretation

In the literature, various possible types of non-separability 
for ST covariance functions have been provided. In De 
Iaco and Posa (2013) the definition of non-separability 
was adequately detailed and furtherly tested in Cappello 
et al. (2018). By recalling the definition in De Iaco and 
Posa (2013), the non-separability index for a ST stationary 
covariance function Cst(hs, ht; �) depending on a vector of 
parameters � , is expressed as follows:

where �st(hs, ht; �) is the spatial-temporal correlation function,  
satisfying the conditions 𝜌st(hs, ht; �) > 0, 𝜌st(hs, 0; �) > 0 
and 𝜌st(0, ht; �) > 0.

According to this definition, a ST stationary covariance 
function Cst is:

• uniformly positive non-separable, if r(hs, ht; �) > 1 for 
all (hs, ht) ∈ D × T ⊆ ℝ

d+1, (hs, ht) ≠ (0, 0) and for all �,

• pointwise positive non-separable at (hs, ht; �), if 
r(hs, ht; �) > 1.

(1)r(hs, ht; �) =
�st(hs, ht; �)

�st(hs, 0; �)�st(0, ht; �)



1409Hydrogeology Journal (2023) 31:1405–1423 

1 3

By changing the direction of the above inequalities, uni-
form negative non-separability or poitwise negative non-
separability are defined.

In variogram form, the empirical non-separability index 
is computed as reported below:

where Ĉst(0, 0) is the estimated variance, �̂st(hs, ht) is the 
empirical ST variogram, �̂st(hs, 0) and �̂st(0, ht) are the purely 
sample spatial and temporal variograms, respectively.

De Iaco and Posa (2013) proposed a classification of 
some well known classes of covariance models, on the 
basis of the above mentioned definition. Among them, the 
product-sum covariance model, selected in the case study 
described hereafter, belongs to the class of models with uni-
formly negative non-separability.

From a computational point of view, box plots of empiri-
cal non-separability ratio, computed for both spatial and 
temporal lags, can help to efficiently identify the types of 
non-separability. The R package covatest (Cappello et al. 
2020) is used to assess the non-separability, characterizing 
the ST correlation structure of the data under study.

The product‑sum ST model

The product-sum model (De Cesare et al. 2001; De Iaco 
et al. 2001) can be formalized in terms of the covariance 
function as follows:

with k1 > 0, k2 ≥ 0, k3 ≥ 0 and where Ct and Cs are valid 
temporal and spatial covariance models, respectively.

As widely detailed in De Iaco et al. (2001), the Eq. (3) 
can be written in variogram form:

where �s and �t represent valid spatial and temporal vari-
ogram models, Cs(0) and Ct(0) correspond to the sill values.

By applying the variogram property according to which 
the value of the variogram at the origin is zero, it implies 
that:

and

where ks and kt satisfy the following equations:

(2)

r̂(hs, ht; Θ) =
Ĉst(0, 0) − �̂st(hs, ht)

[Ĉst(0, 0) − �̂st(hs, 0)][Ĉst(0, 0) − �̂st(0, ht)]
⋅

1

Ĉst (�, 0)

(3)Cst(hs, ht) = k1Cs(hs)Ct(ht) + k2Cs(hs) + k3Ct(ht)

(4)
�st(hs, ht) = [k2 + k1Ct(0)]�s(hs) + [k3 + k1Cs(0)]�t(ht)

− k1�s(hs)�t(ht)

(5)�st(hs, 0) = [k2 + k1Ct(0)]�s(hs) = ks�s(hs)

(6)�st(0, ht) = [k3 + k1Cs(0)]�t(ht) = kt�t(ht)

The coefficients k1 , k2 , and k3 can be obtained as reported 
below:

where Cst(0, 0) is called global sill.
By recalling the Eqs. (5) and (6), the Eq. (4) can be 

expressed as follows:

where k =
k1

kskt

=
ksCs(0) + ktCt(0) − Cst(0, 0)

ksCs(0)ktCt(0)

As proved in De Iaco et  al. (2001), this simplified 
form of �st(hs, ht) includes only k as the parameter, which 
depends on the global sill value Cst(0, 0) . The Eq. (12) is 
admissible if and only if the following condition for k is 
satisfied:

Further details are available in De Iaco et al. (2001).

Drift

When the expected value of a ST random function Z depends 
on the space location, on time or both, the second-order sta-
tionarity hypothesis is not satisfied for Z. In that case, the 
random function can be expressed as:

where m(s, t) represents a deterministic function (known as 
drift) and R(s, t) , known as the residual, is supposed to be 
a zero mean second-order stationary ST random function 
modeling the space-time fluctuations around m(s, t) (Kyri-
akidis and Journel 1999). To represent the function m(s, t) , 
a trend surface (typically polynomial functions) can be 
obtained by a least-squares fit to the data. In this way, zero 
mean stationary data (residuals) are obtained and used to 
calculate the variogram.

(7)k2 + k1Ct(0) = ks

(8)k3 + k1Cs(0) = kt

(9)k1 =
ksCs(0) + ktCt(0) − Cst(0, 0)

Cs(0)Ct(0)

(10)k2 =
Cst(0, 0) − ktCt(0)

Cs(0)

(11)k3 =
Cst(0, 0) − ksCs(0)

Ct(0)

(12)�st(hs, ht) = �st(hs, 0) + �st(0, ht) − k�st(hs, 0)�st(0, ht)

(13)0 < k ≤
1

max{sill 𝛾st
(

hs, 0
)

, sill 𝛾st
(

0, ht

)

}

(14)Z(s, t) = m(s, t) + R(s, t)
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Main characteristics of the study area

Mexico City is settled in the southern part of the Basin of Mex-
ico (BM) (Fig. 1), which is surrounded by volcanic sierras with 
altitudes higher than 3,500 meters above sea level (masl, from 
now on, m) and with alluvial fans, flood plains composed by 
sand, silt, clay and volcanic materials deposited in the central 
part of the valley (Arce et al. 2019). The BM is bounded to the 
south by the Sierra Ajusco-Chichinautzin, at the east by the 
Sierra Nevada, at the west by the Sierra de las Cruces and north 
by the Pachuca Sierra. It is considered an endorheic basin with 
no natural outflows; the natural drainage initially converged 
to the inferior part of the basin, giving origin to a system of 
5 lakes with superficial and groundwater inputs (Herrera and 
Dumars 1995). Most of the groundwater recharge happens 
in the surrounding ranges, producing surface and subsurface 
flows towards the center of the basin, which originally were 
discharged through springs in the mountain areas and through 
the bottom of the lakes, mixing with water coming from sur-
rounding rivers (Carrillo-Rivera et al. 2008; Bücker et al. 2017).

During the Spanish colonial period (1521-1821), the basin 
underwent artificial modifications as part of human-induced 
changes in the hydrogeological system. These alterations included 

the construction of catchment and drying channels. Additionally, 
to control flooding and facilitate the urban expansion of the city, 
the five lakes originally present in the area until the mid-19th cen-
tury were subsequently dried. In more recent times, a deep sewage 
system was developed, redirecting rainwater and wastewater from 
the basin to a neighboring basin located to the north in the state of 
Hidalgo (Herrera and Dumars 1995).

The metropolitan area of Mexico City extends over a large 
portion of the study area (3,985 km2 ), and according to the 2020 
population and housing census (INEGI 2022), more than 21 
million inhabitants live there, comprising 17.3% of the country’s 
total population. This anthropological change has influenced the 
local hydrology through the intensive demand for groundwater 
for urban and industrial supply, and through urbanization of the 
basin and modification of local weather patterns.

According to Ávila-Carrasco et al. (2023), on average, the 
cumulative annual rainfall is of the order of 700 mm, which is 
distributed irregularly. The highest precipitation (up to 1400 
mm/year) occurs in the mountains and ranges, where forest and 
natural areas are still conserved, while the lowest precipitation 
(400 mm/year) occurs in the lower and the plain regions at the 
center of the study area, where most of the urbanization and 
impermeable areas are located. However, there is still a recharge 

Fig. 1  Study area. Limit of the Basin of Mexico (BM) and the Southern Basin of Mexico Aquifer System (SBMAS)
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input in the plain area, related to urban parks, channels, agri-
cultural areas, flooding areas, and leakage from the water sup-
ply, and sewer systems. Regarding the changes in temperature, 
the highest values occur from April to May, and the lowest 
from November to February, with an average value of 21 °C, 
conditioning related parameters such as evapotranspiration, the 
available soil moisture, and the infiltration process.

Arce et al. (2019) cited several studies that have established 
the geology and stratigraphy of the BM during the past half 
century (Vázquez-Sánchez and Jaimes-Palomera, 1989), as 
well as recent studies defining the evolution of stratigraphic 
relations of the volcanic ranges around the basin. An initial 
hydrostratigraphic division was proposed by Mooser and 
Molina (1993) and subsequently modified by Ortega Guer-
rero et al. (1997), based on hydraulic properties of strata, 
conceptualizing the basin from the upper part to the bottom 
as: (1) low-permeability upper unit (LPUU, the upper aqui-
tard), formed by Quaternary lacustrine clays, initially acting 
as a semi-confining unit for the permeable upper unit, with 
variable depth (5 to 130 m) and spatially placed where natu-
ral lakes were present, vertically connected to the lower unit 
and nowadays hydraulically disconnected in some areas due to 
decrease in piezometric level in the lower formation (Rudolph 
et al. 1991), having two recharge inputs (artificial recharge 
coming from sewer and supply systems, urban parks, chan-
nel, flooding areas, and natural recharge coming mainly from 
rain); (2) permeable upper unit (PUU, the upper aquifer in 
exploitation), formed by Quaternary-age alluvial and volcanic 
materials, as well as andesitic and dacitic Pliocene-age mate-
rial with secondary porosity associated with fractures, and with 
600 m depth on average having recharge inputs from leak-
age in the LPPU, natural recharge coming from rain inputs 
where the LPPU is not spatially present in the area and natural 
recharge from the surrounding mountains and ranges; (3) low-
permeability lower unit (LPLU, the lower aquitard), formed 
by Oligocene and Eocene age igneous rocks and sandstones, 
shales and limestones of the Late Cretaceous age, with very 
low permeability and porosity (Mooser et al. 1996), considered 
as a hydraulic lower limit for the PUU; (4) permeable lower 
unit (PLU, the lower aquifer), formed by Early Cretaceous age 
rocks (limestones), with high permeability caused by intense 
fracturing and the presence of dissolution channels, considered 
as a potential aquifer with limited quality for urban consump-
tion. A more detailed description of the hydrostratigraphic 
units is presented in Herrera-Zamarrón et al. (2020).

This study’s efforts are centered on analyzing the temporal 
changes in GE in the PUU of the southern part of the BM aquifer 
system. Its limits are shown in Fig. 1. The National Commission of 
Water (Comisión Nacional del Agua, CONAGUA), which is the 
national entity in charge of water management, has divided the sur-
face that comprises the LPUU and PUU hydrostratigraphic units 
(for administrative and legal purposes) into the Metropolitan Mexico 
City (MMC) Aquifer (2,104 km2 ), the Texcoco Aquifer (934 km2 ) 

and the Chalco-Amecameca Aquifer (947 km2 ), corresponding to 
41.5 percent of the total area of the BM (CONAGUA 2018).

Geostatistical modeling

This section will present a detailed description concerning 
the structural analyses of the GE data, the GE kriging esti-
mates, and the GE changes between two specified years, for 
the spatial and ST cases.

Data description and exploratory analysis

The available GE data include annual observations for 21 
years (from 1997 to 2017), distributed in the three adminis-
trative aquifers. They have been used to study, for the sake 
of simplicity, the temporal GE changes between the years 
2002 and 2007; so that in the following, the complete dataset 
has been used for the ST analysis, while the spatial analysis 
has been conducted using GE data from the specified years.

Figure 2 shows the well positions in the dataset with special 
symbols in order to distinguish wells with data for 2002 and 
wells with data for 2007. The positions shown with black dots 
indicate wells with at least one data for the complete set of 
years. All the monitoring wells are production wells, which are 
irregularly distributed wells extracting water from the upper 
aquifer (PUU). Note that, although the measurements taken 
in active pumping wells could be heavily influenced by the 
exploitation strategy, a period of 24 hours (after the pump is 
turned off) must be considered for the GE measurements in 
the field according to the Mexican water agencies, so that the 
static groundwater level is reached. So, it is assumed that the 
GE measurements are static hydraulic heads.

In order to evaluate groundwater level differences in the valley 
area (where most of the wells are located), the raster layers are 
clipped by the topographic elevation of 2,300 m, shown with a 
blue dash line in Fig. 2, where the majority of the dataset is present.

It is worth pointing out that the average density of wells is 
larger compared with the regional studies reported in Table 1. 
However, while some areas and years lack information (for 
example, a broad area between the MMC and Texcoco 
aquifers), others are very dense. In some regions, 2002 and 
2007 data can be complemented by data in other positions 
and years. For example, in the Chalco aquifer, several wells 
with data for 2007 lack data for 2002. Also, a portion of the 
MMC aquifer has no data for 2002 and 2007, but a significant 
amount of data for other years. So, depending on data avail-
ability, different spatial positions and GE values are used as 
data input for the spatial and ST analysis. The data from iso-
lated wells outside the cropped area were removed.

The spatial and ST trends are modeled by using the sec-
ond-degree polynomials (least-squares fitting), as shown 
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in Table 2. Note that the independent variables x and y are 
the UTM coordinates in the west-east and north-south axes, 
respectively, and t denotes the time in years. By analysing 
the basic statistics in Tables 3 and  4 a more symmetric 
distribution can be detected for the GE residuals. After 
removing the trend from the data, the residuals for both, the 
spatial and the ST case, are used in further steps.

The ST database comprises 3,699 measurements over 
time at 474 spatial locations, with an average of 176 loca-
tions per year. Concerning the data per well, eight have the 
longest time series (21 annual data corresponding to the 
analysis period), and the average data per well is 8.

Figure 3 shows the box plots of the GE residuals for each 
year, which are very similar in the period 1997-2010, then the 
dispersion of the data tends to increase from 2011 to 2017.

Structural analyses

In this step, the spatial and spatio-temporal variograms have 
been estimated and modeled. First of all, the omnidirectional 
spatial variograms of the residuals of GE for 2002 and 2007 
have been estimated and the exponential models have been 
fitted to each of them, as shown in Fig. 4. The parameters of 
the selected spatial models are given in Table 5. It is worth 

Fig. 2  Well locations for the complete set of data, from 1997 to 2017 (black dots). The position of wells with data for 2002 and 2007 are shown 
with different symbols (orange diamonds and yellow squares respectively). Where symbols overlap, data from more than one year concur

Table 2  Second degree 
polynomials adjusted to GE data

Dataset Adjusted polynomial

247 GE (2002) m(x, y) = 325,674.488 − 0.059 x + 5.938 ⋅ 10−8x2 − 0.288 y + 6.701 ⋅ 10−8y2

148 GE (2007) m(x, y) = 346,099.883 − 0.076 x + 7.673 ⋅ 10−8x2 − 0.303 y + 7.047 ⋅ 10−8y2

3699 GE (1997-2017) m(x, y, t) = 343,073.483 − 0.072x + 7.206 ⋅ 10−8x2 − 0.301 y + 7.012 ⋅ 10−8y2

−0.601 t + 2.36 ⋅ 10−3t2
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pointing out that no significant anisotropy has been detected 
from the sample spatial directional variograms.

By focusing on the ST case, the sample ST variogram 
of the residuals is obtained using 7 spatial and 14 temporal 
lags. The empirical surface of the ST variogram and the cor-
responding marginals, together with the marginal models, 
are illustrated in Fig. 5. In particular, the sample spatial and 
temporal variograms reported in Fig. 5b and c are drawn by 
using all the couples of data from the ST dataset.

The spatial lag size is 3 km, and each temporal lag has an 
extension of one year. Note that the spatial and temporal lags are 
fixed by considering the maximum distance among the sample 

locations and the length of the time series for each sample spatial 
point. The temporal marginal (variogram constructed using the 
time series) as well as the spatial marginal (variogram obtained 
using observations distributed in the spatial domain) are esti-
mated and modeled before producing the ST variogram model.

In order to choose the appropriate class of ST variogram 
model, the sample non-separability ratios (2) are determined 
and classified by spatial and temporal lags (Fig. 6). From the 
box plots shown in Fig. 6 it is evident that the sample ratios 
are always less than one, which implies that a uniform negative 
non-separability is detected. Thus, the product-sum model is 
considered a suitable choice, since its theoretical type of non-
separability is consistent with this evidence (De Iaco and Posa 

Table 3  Basic statistics of the GE data for years 2002 and 2007 (spa-
tial case)

Variable GE 2002 Residuals of 
GE 2002

GE 2007 Residu-
als of GE 
2007

Number of data 247 247 148 148
Min (m) 2,141 -65.6 2,138.9 -48.4
Max (m) 2,286.9 71.3 2,285.5 75.5
Mean (m) 2,199 -0.003 2,200.5 -0.02
Std. Dev. (m) 21.9 18.2 24.1 19.2
Skewness 1.4 0.8 1.2 0.8
Kurtosis 5.2 4.7 4.4 4.3
1st Quartile (m) 2,185 -12.2 2,185.8 -11.12
Median (m) 2,192.9 -3.4 2,192.9 -3.2
3rd Quartile (m) 2,208.5 8.6 2,208.8 8.8

Table 4  Basic statistics of the GE data for the 1997-2007 period (spa-
tio-temporal case)

Variable GE 1997-2017 Residuals of GE 
1997-2017

Number of data 3,699 3,699
Min (m) 2,129.28 -72.04
Max (m) 2,299.55 79.13
Mean (m) 2,198.34 -0.002
Std. Dev. (m) 22.98 18.45
Skewness 1.22 0.84
Kurtosis 1.85 1.48
1st Quartile (m) 2,182.82 -12.34
Median (m) 2,192.79 -3.88
3rd Quartile (m) 2,208.02 9.55
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Fig. 3  Box plots of the GE for the years 1997-2017, together with the number of spatial locations per year
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2013). Indeed, the type of non-separability of the product-sum 
is always uniformly negative, so that its non-separability index 
reflects the behavior of the empirical one.

The parameters of the selected ST product-sum model 
are shown in Table 6 and are such that the model is strictly 
positive definite (De Iaco and Posa 2018).

Cross‑validation

In the following, the leave-one-out cross-validation proce-
dure has been carried out in order to check the adequacy of 
the fitted spatial and ST models.

In Fig. 7 the scatter diagrams of the GE residuals and the 
estimated ones are shown, as well as the mean error (ME), 
the mean absolute error (MAE), the root mean square error 
(RMSE), the normalized root mean square error (NRMSE) 
and the Spearman correlation coefficients. For the spatial 
cases (Fig. 7a and c), the highest estimation error (overes-
timation) has been registered on the southwestern border of 

the domain and has been due to the presence of high observed 
residuals in its spatial neighborhood. In general, the disper-
sion of the cloud around the bisector has been caused by the 
reduced number of close neighbors for most of the estimates.

On the other hand, when using the ST approach for cross-
validating the residuals for 2002 and 2007 (Fig. 7b and d)), the 
goodness of the estimates significantly increases. These statis-
tics provide a quantitative measure of the obtained improve-
ment, thanks to the high performance for the selected ST vari-
ogram model and the geometry of the sample points in ST.

Groundwater elevation estimates

In this section, spatial and ST kriging estimates are obtained 
on a grid with 1,000 m × 1,000 m cells size, covering a sur-
face of 1,585 km2 over the plain area (2,300 m), by adding 
the corresponding spatial or ST trend (Table 2) to the kriging 
residual estimates.

Figures 8 and  9 illustrate the spatial and ST kriging contour 
maps of the GEs and the distribution of the estimated values 
through their box plots and histograms for 2002 and 2007, 
respectively.

In the following, the corrections provided by using the ST 
approach with respect to the spatial one have been underlined.

In 2002 the GE minimum values are very similar (2,167 
m and 2,172 m for the spatial and ST cases, respectively). 

Fig. 4  Sample spatial vari-
ograms (black points) and its fit-
ted variogram models (continu-
ous line) of the GE residuals for 
the year a 2002, b 2007

Table 5  Parameter estimates of the selected spatial variogram models 
for the GE residuals

Year Model Nugget Partial sill Range

2002 Exponential 1 m 2 342 m 2 3100 m
2007 Exponential 1 m 2 364 m 2 3100 m

Fig. 5  a Sample spatio-temporal variogram surface, b sample spatial variogram (black points) and its fitted model (continuous line); c sample 
temporal variogram (black points) and its fitted model (continuous line), for the GE residuals within the period 1997-2017
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However, there is a difference of 46 m between the maxi-
mum values (2,246 m and 2,292 m). Moreover, from the 
Fig. 8c and d, a moderately left-skewed distribution emerges 
for both the spatial and ST case, with a slightly wider left 
tail in the last one.

 A similar behavior of the GE distributions can be found 
in 2007 (Fig. 9), with a difference of 11 m between the 

maximum values (2,259 m and 2,270 m) and a GE minimum 
value slightly smaller for the ST case than in the spatial one 
(2,163 m and 2,155 m).

Figure 8a and b for 2002 and Fig. 9a and b for 2007 show 
also that the highest GEs are close to the mountains in the 
periphery, as especially highlighted for the ST case. For 
2002, the minimum values are found in the MMC aquifer, 
for both, the spatial and ST case. However, in the ST con-
tour map, values lower than 2,180 m and more extended 
areas with values lower than 2,190 m are also found in the 
Texcoco aquifer.

For 2007, the minimum estimates are obtained in the 
Texcoco aquifer in both cases, although values lower than 
2,180 m are more evident for the ST kriging, as shown in 
Fig. 9b.

Fig. 6  Box plots of sample non-
separability ratios grouped for a 
spatial and b temporal lags

Table 6  Parameter estimates of the selected spatio-temporal vari-
ogram model for the GE residuals within the 1997-2017 period

Model Component Nugget Sill Range

Exponential Spatial 1 m 2 325 m 2 3100 m
Gaussian Temporal 1 m 2 48 m 2 8 years
Product-sum Global 1 m 2 368 m 2 -

Fig. 7  Scatter plots of the cross-validation results of the GE residuals: true values versus estimated ones for the spatial and the spatio-temporal 
cases in the years 2002 (a), (b) and 2007 (c), (d)
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Finally, a groundwater divide between the MMC and the 
Texcoco aquifers (close to the boundary of Mexico City), 
already recognized in previous works (Durazo and Far-
volden 1989), is more clearly defined in the ST interpola-
tions. Also, the Chalco aquifer has a consistent zone with 
high values in all the contour maps, which is better defined 
in the ST maps.

In addition, Fig. 10 illustrates the contour maps for the 
spatial and ST estimation error SD of GEs concerning the 
year 2002 and the distribution of their values through the 
box plots and histograms. It is worth pointing out that, 
for both the spatial and ST maps, the largest values are 
detected in the boundary between the MMC and the Tex-
coco aquifers, an area with almost no wells (see Fig. 2). 
Naturally, the smallest values are in the zones with a 
higher density of available data. The SD values tend to 
be smaller for the ST case with respect to the spatial one, 
due to the new geometry of the ST samples points and the 
ST model used to describe both the correlation in space 
and time together with the ST interaction. Indeed, 75% 

of the values are larger than 16.6 m in the spatial case, on 
the other hand, 75% of them are smaller than 14.5 m in 
the ST case. Moreover, by analysing Fig. 10c and d, it is 
evident that the estimation error SD distribution in the ST 
case is more symmetric than the one in the spatial case.

Similarly, Fig. 11 compares the contour maps of the spa-
tial and ST estimation error SD of GEs for the year 2007. 
The general behavior of the distribution of the estimation 
error SD is similar to that of 2002, although those of the 
spatial case change more than the ST one. Note that the 
number of wells with data for 2007 are significantly less than 
for 2002, thus as expected, the ST estimates are more robust 
to the lack of data for one specific year.

Remark When comparing the spatial and ST interpola-
tions, the main remarks are that the latter show larger areas 
characterized by the same low groundwater level (2,180 m) 
in both years. A groundwater divide between the MMC and 
the Texcoco aquifers is more clearly defined in the ST con-
tour maps, which may be related to the large thickness of 

Fig. 8  Comparison of GE for the year 2002: a spatial and b ST kriging contour maps, c box plots and d histograms
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the aquitard in that area. Also, a zone consistently presents 
high values in the Chalco aquifer and is better defined in 
the ST maps. Considering the cumulative effect of histori-
cal withdrawals on the aquifer system, the cross-validation 
results, the lower SD error estimates for extended portions 
of the aquifer, and the more consistent error estimate SD 
distribution, it can be reasonably assumed that the ST esti-
mates reflect more consistently the behavior of the natural 
response of a heavily pumped aquifer.

Groundwater level changes

In this section, the temporal changes of the GE, and their 
corresponding estimation error SD are estimated and 
mapped over the valley area (2,300 m) covered by the aqui-
fer using a geographical information system. Finally, the 
results of the spatial and ST kriging approaches are com-
pared and evaluated.

The spatial and ST kriging GE difference (GE in 2002 
minus GE in 2007) over the aquifer and the distribution of 
their values through their box plots and histograms are shown 
in Fig. 12. While in the spatial case, the level differences are 
between -41.2 m and 33.7 m with a mean of 2.21 m and a 
median of 6.5 m, in the ST case, they are between -21.5 m 
and 55.1 m with a 4.3 m mean, very close to the median. As 
shown by the box plot (Fig. 12c), most of the estimated dif-
ferences for the ST kriging highlight a GE recovery up to 5 
m (-5 m in the reported results) and a drawdown up to 10 m, 
which seems to be reasonable for the studied area considering 
the GE evolution shown by the observed data at each well 
for the interval under study. From a direct cell count, 85.4% 
of the GE difference values present recovery up to 5 m (-5 m 
in terms of differences) or drawdown up to 10 m, for the ST 
kriging and only 45.8% for the spatial kriging.

In particular, in the ST case there are more extended 
areas with drawdowns of about 5 m, meaning that for the 

Fig. 9  Comparison of GE for the year 2007: a spatial and b ST kriging contour maps, c box plots, and d histograms
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period of analysis, the drawdowns of the groundwater level 
in the aquifer system is about 1 m/year. In both cases, there 
are consistent drawdowns between the latitudes 2,130,000 
and 2,150,000, almost on a diagonal line that crosses from 
west to east in the ST kriging map, but only crossing the 
Texcoco aquifer and a portion of the MMC aquifer in the 
spatial kriging map. Note that the spatial kriging map has 
more extended areas with drawdowns larger than 10 m, 
which is heavily influenced by the available spatial data in 
years 2002 and 2007.

Checking GE recovery (negative values), 17.3% of the 
analyzed area is obtained for the ST kriging estimates and 
32.5% for the spatial kriging. The last percentage for the 
spatial kriging provides an implausible pattern for a heav-
ily pumped aquifer. Considering these percentages, the ST 
kriging recovery and drawdown results for the five years are 
reasonably smaller than those for the spatial case.

Zones with recoveries of 25 to 40 m (negative values) are 
observed in the northwestern area for the spatial kriging; on 
the other hand, they are estimated as drawdowns in the ST 
case. It is worth noting that both cases correspond to areas 

with large SDs of the estimation error (Fig. 13a), although 
smaller for the ST kriging (Fig. 13b).

Figure 13 compares the contour maps for spatial (a) and ST 
(b) estimation error SD for GE differences and the distribution 
of their values through their box plots (c) and histograms (d). 
The SD values are significantly smaller for the ST kriging 
(as shown in Fig. 13c), which has 75% of the values smaller 
than 6 m; in contrast, for the spatial case, 75% of the SD 
values are larger than 17.2 m, and only a few values are less 
than 6 m. The contour maps (Fig. 13a, b) are similar to the 
maps of the estimated error SDs of the GEs for 2002 (Fig. 10) 
and 2007 (Fig. 11). However, the spatial estimated error SD 
values are of course larger than the ones in 2002 and 2007, 
s i n c e  Var[E1(s, 2002) − E2(s, 2007)] = Var[E1(s, 2002)]

+Var[E2(s, 2007)] , where E1(s, t1) = Ẑ(s, t1) − Z(s, t1) and 
E2(s, t2) = Ẑ(s, t2) − Z(s, t2) are the GE estimation error SD 
for the position s and time t1 and t2 . On the other hand, for the 
ST case, the estimated error variance of the GE changes is 
Var[E1(s, 2002) − E2(s, 2007)] = Var[E1(s, 2002)] + Var[E2

(s, 2007)] − 2Cst[E1(s, 2002), E2(s, 2007)] ; the estimated 
error SD of the GE changes is reduced more in the ST case 

Fig. 10  Comparison of the standard deviation of GE for the year 2002: a spatial and b ST kriging contour maps, c box plots, and d histograms
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since the covariance between the GE estimate errors at the two 
years is considered (Fig. 13b).

Uncertainty in the GE change estimates is also checked 
by computing, for each grid cell, the absolute value of the 
coefficient of variation (ACV, i.e. the ratios between the SD 
and the absolute value of the GE difference estimate). 75% of 
the ACV values are less than 3.5 for the spatial kriging and 
less than 1.5 for the ST kriging. Therefore, the latter consid-
erably reduces the error estimate uncertainty of the ground-
water level change. A complete report of the ACV values is 
presented in the electronic supplementary material (ESM) and 
the maps that show details on the spatial distribution differ-
ences between the two approaches for the CV and ACV of 
the GE changes.

Discussion

In previous works, temporal changes in groundwater levels, 
for a given period, were calculated by using two procedures 
based on spatial kriging. In the first approach, for each well, 
the groundwater level in the period’s final year is subtracted 
from the corresponding level in the period’s initial year, and 

afterward, kriging interpolation is done (for example, Ta’Any 
et al. 2009 and Ahmadi and Sedghamiz 2007). This procedure 
is possible when the data are available for the initial and final 
years of the evaluated period at the same wells or if the missing 
data are filled in. In the second approach, temporal changes are 
calculated by subtracting the groundwater levels after interpolat-
ing each year’s data over a spatial grid (for example, Sun et al. 
2009). However, when data are unavailable in the same set of 
wells for the initial and final years of the evaluated period, this 
approach, although possible, may produce misleading results.

This work proposes an alternative for the second 
approach, in which the GE interpolation is obtained with 
ST kriging and then takes advantage of the available obser-
vations not only over space, but also in time. Ruybal et al. 
(2019a) used a similar approach to calculate temporal 
changes in piezometric levels. However, their emphasis 
was on analyzing the piezometric levels, and the temporal 
changes were only presented in maps. On the other hand, 
Ruybal et al. (2019b) focused on evaluating groundwa-
ter storage changes in the Denver Basin Aquifer System 
(USA), applying the ST approach of their previous work, 
emphasizing the hydrological implications and highlight-
ing uncertainty in the volumetric predictions on the basis 

Fig. 11  Comparison of the standard deviation of GE for the year 2007: a spatial and b ST kriging contour maps, c box plots, and d histograms
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of the storage coefficient uncertainty. None of these works 
thoroughly compared the spatial and ST kriging results 
and the estimated errors of the groundwater level temporal 
changes, as evaluated in this work. Furthermore, in contrast 
with Ruybal et al. (2019a), in this work, the non-separa-
bility index (Cappello et al. 2018) is used to choose the 
appropriate class of the ST variogram model. Also, the 
SD of the estimate errors of the GE temporal change has 
been computed and presented for the first time using ST 
kriging. The results have highlighted the improvements in 
terms of more realistic estimates and reduced estimation 
error SD, obtained when data at other times are involved 
in the interpolation process.

Ruybal et al. (2019a) proposed a list of pending issues in 
the ST geostatistical applications to Hydrogeology (Table 1). 
These were: (1) assessment of the applicability of additional 
space-time variogram models to predict groundwater levels; 
(2) evaluation of aquifers on a larger scale with an extent of 
thousands of kilometers; (3) further assessment of ST krig-
ing for confined, semiconfined, and unconfined systems; (4) 

evaluation of longer time periods; (5) evaluation of more 
methods to remove global groundwater trends or drift; and 
(6) advocating for the advantages of ST applications on 
irregular or sparse groundwater datasets, which is common 
in groundwater applications.

Referring to the above mentioned issues this study 
has given a significant contribution to the successful 
application of the ST approach: (i) on a regional aquifer; 
(ii) on the semiconfined and unconfined conditions in 
the SBMAS; (iii) by using a long time series length (21 
years); (iv) on the irregularly distributed GE dataset (even 
with broad areas lacking data between the MMC and Tex-
coco aquifers), where the ST geostatistical application 
dramatically reduces the uncertainty in the estimation 
error SD.

Finally, it is worth recalling that in the presented anal-
ysis, the trend has been removed from the data, so that 
the structural analysis and kriging have been conducted 
on the residuals. Once the estimated residuals have been 
obtained, the trend is added in order to determine the 

Fig. 12  Comparison of groundwater level temporal changes: a spatial and b ST kriging contour maps, c box plots, and d histograms
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estimated values for the variable under study. This is a 
consolidated way to proceed in the presence of a trend, as 
also shown in the published papers on the same subject 
referred to in Table 1. However, considering that after sub-
tracting the trend, as done when applying residual kriging, 
the experimental variogram of the residuals presents a bias 
(see, for example, Matheron 1971), the adoption of other 
methods that avoid this problem, like universal kriging or 
IRF-k kriging, represents a pending issue that could be 
addressed in future works.

Conclusions

The analysis conducted in this work focused on estimat-
ing groundwater level changes in the upper area of the 
SBMAS. For this aim, the performance of the spatial and 
ST approaches was evaluated, and estimation error SDs 
of the GE changes were presented. The improvements of 
applying the ST kriging for the GE estimates compared 

to the spatial kriging were quantified on the basis of the 
cross-validation results and the estimate error SDs, which 
were useful to better distinguish relevant hydrological 
behaviors. Especially for the computed differences in 
the GE, the ST kriging produces more reasonable results 
than the spatial kriging, since less extreme recoveries 
and drawdowns, associated to smaller SD of the estimate 
errors, were highlighted.

A thorough ST hydrogeological analysis of the ground-
water level changes for the period 1997 to 2017 in the 
upper aquifer of the SBMAS and their different sources 
of uncertainty (including the interpolation error of the 
groundwater level changes) should be performed in the 
future. Moreover, the complex geostatistical approach, 
both in the spatial domain (De Iaco et al. 2003;  De Iaco 
et al. 2013; De Iaco 2017; De Iaco, 2023b) and in the spa-
tio-temporal context (Cappello et al., 2021a, b, 2022; De 
Iaco, 2022, 2023a), holds significant potential for modeling 
groundwater velocity, as demonstrated in the work of De 
Iaco and Posa (2016).

Fig. 13  Comparison of the estimation error SD of the groundwater level difference: a spatial and b ST kriging contour maps, c box plots, and d 
histograms
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